Что мы знаем о радиоактивных строительных материалах?
Мы все немало времени проводим внутри помещений – отдыхаем и работаем дома, трудимся в офисе или на производстве, расслабляемся в культурных заведениях. Наше самочувствие и здоровье во многом зависят от того, насколько безопасен внутренний микроклимат помещения. В частности, не использовались ли при возведении и ремонте здания радиоактивные строительные материалы. Иногда это влияет и на продолжительность жизни, а это уже серьезно.
Что такое естественная радиоактивность материалов
Естественная радиация в природе существовала всегда. Один из ее источников – излучение земной коры. В ее толще залегают породы, из которых производят многочисленные строительные материалы. Многие из них до сих пор хранят следы радиоактивного прошлого нашей планеты.
К наиболее вредным строительным материалам причисляют:
Все они выделяют достаточно большое количество радона, поэтому для внутренней отделки перечисленные материалы лучше не использовать. Кирпич, бетон и дерево в этом смысле считаются сравнительно безопасными. Причем радиоактивность силикатного кирпича ниже, чем красного.
Относительно невысока удельная активность радионуклидов у карбонатных горных пород – мрамора и известняка. Средним уровнем естественной радиоактивности отличаются песок и гравий. Уровень радиации стекловолокна, фосфогипса обычно находится в допустимых пределах, но ради собственной безопасности стоит проверять и их.
Распространенные заблуждения о радиоактивности некоторых стройматериалов
Радиоактивность древесины выше, чем кирпича. Это заблуждение появилось после того, как люди начали измерять уровни радиационного фона внутри домов, построенных из этих материалов. При этом самыми высокими оказались показатели, снятые в деревянных строениях. На самом деле причина этого в том, что большинство деревянных домов – малоэтажные, то есть комнаты там расположены близко к земле, которая считается основным естественным источником радона.
Бетон – опасный радиоактивный материал. Мнение о высокой радиоактивности бетона распространилось после серии статей о повышенном радиационном фоне в панельных домах. На самом деле это не так. Радиоактивность этого материала многократно ниже, чем у кирпича. К тому же, основная его часть обычно сконцентрирована в фундаменте дома. Еще один аргумент: на крупных предприятиях по производству бетона безопасность продукции контролируют, а в качестве сырья используют щебень, добытый из сертифицированных мест.
Но тем не менее опасность, связанная с радиоактивностью наполнителей для изготовления этого строительного материала существует. Поэтому, если вы замешиваете бетон самостоятельно, желательно проверить используемый для этого щебень и песок дозиметром. Это поможет убедиться в том, что данный материал можно использовать при строительстве жилых зданий. Проверка требуется в основном гранитному щебню, так как гравийный материал в зону риска практически не входит.
В чем опасность радиоактивных строительных материалов
Радиоактивность некоторых используемых в строительстве материалов может нанести вред здоровью. При распаде радионуклидов, входящих в их состав (радия-226, калия-40, тория-232), выделяется радиоактивный газ радон. Его объемная активность в воздухе непроветриваемых помещений (подвалов, подземных станций метро), бывает в 10 и более раз выше, чем в открытой атмосфере.
Радон выделяется в воздух в два этапа. Сначала он проникает из материала в поры элементов строительного объекта. Затем постепенно распространяется через микрощели и трещины. При этом часть его распадается и попадает в воздух помещения. Больше всего радона скапливается на первых этажах зданий.
Опасность радиоактивных строительных материалов в том, что исходящее от них излучение может значительно ухудшать экологию помещения. Вследствие этого людей беспокоят:
- головные боли,
- аллергия,
- плохое самочувствие.
Более того, поступая в легкие, радон распадается с выбросом альфа-частиц. Это может вызывать микроожоги тканей и их злокачественное перерождение.
Как проверить стройматериал на радиоактивность
Уровень природной радиоактивности строительных материалов ограничивается нормами радиационной безопасности (НРБ –99/2009). Этот нормативный документ устанавливает три класса стройматериалов с разной величиной эффективной удельной активности природных радионуклидов (Аэфф). Так, для строительства и ремонта жилых и общественных зданий допускается использовать материалы с Аэфф не более 370 Бк/кг.
К сожалению, сегодня никто не может гарантировать, что приобретаемые вами стройматериалы, а также обои, керамическая плитка, краска, штукатурка безопасны и ничего не излучают. Если вы покупаете материалы по цене ниже средней и не можете сказать, что уверены в поставщике на все 100 %, проверьте их точным дозиметром, например RADEX RD1008. Он оснащен двумя детекторами радиации, один из которых измеряет не только бета- и гамма-излучение, но фиксирует также альфа-лучи.
Дозиметр поможет вам аргументированно отклонить даже выгодное предложение о покупке вредных строительных материалов, которые иногда поступает от недобросовестных продавцов и поставщиков. Кроме того, с этим прибором вы легко проверите свою квартиру, офис, производственное помещение на предмет радиационной безопасности.

Радиоактивность строительных материалов
Люди привыкли связывать радиационные угрозы с определёнными зонами, но природные источники радиации находятся повсюду, поэтому угрозы, связанные с радиоактивным загрязнением, нельзя не учитывать при строительстве и эксплуатации зданий и сооружений.
Из распространённых строительных материалов наибольшую радиационную угрозу могут представлять гранит и кварцевый диорит. Менее опасны песок и глина, при этом красные кирпичи более радиоактивны, чем силикатные. Практически безопасны карбонатные породы: мрамор, известняк, гипс.
Радиоактивность пород из различных месторождений может отличаться в разы. В паспорте стройматериалов указывается их радиоактивность, но рекомендуется перепроверить эти материалы с помощью дозиметра ещё на этапе заключения договора по поставке.
Также рекомендуется делать замеры при доставке материалов на строительную площадку, поскольку добыча ископаемых может производиться на различных, в том числе на радиоактивно загрязнённых участках.
Для радиационного контроля стройматериалов и других объектов используются дозиметры. Например, дозиметр полевой (ДП-5А) – табельное средство в войсках химической и радиационной разведки. Существуют и другие приборы промышленного и бытового класса, позволяющие проводить дозиметрию местности и различных объектов.
Исследуя строительные материалы, желательно исследовать как суммарную радиоактивность, так и уровень альфа-излучения материалов. Это обусловлено высоким уровнем ионизирующего излучения от пород, в первую очередь, от того, что в них скапливается радиоактивный газ радон – природный источник альфа-излучения.
В отличие от гамма- и бета-излучения, альфа-частицы обладают наименьшей проникающей способностью. От них способен защитить даже лист бумаги. Однако, по своему разрушительному действию на органику альфа-частицы самые опасные, и по эквивалентному пересчёту к гамма-квантам, согласно НРБ-99/2009, пропорция 20:1.
Альфа-излучение представляет опасность для открытой кожи и слизистых, особенно от радонновых вод. При употреблении в пищу зараженного материала наблюдаются поражения органов пищеварения.
Радон, как инертный газ, смешивается с атмосферным воздухом и попадает в дыхательные пути, и далее – в лёгкие, поражая лёгочную ткань, в том числе приводя к раку лёгких.
Альфа-излучение особенно опасно многочисленными мутациями в клетках. Это проявляется интоксикационным синдромом: слабость, головные боли, тошнота и другие расстройства.
При длительной экспозиции клеточные мутации приводят к развитию онкологии, и чем больше суммарная доза облучения, тем выше вероятность патологических последствий и их степень тяжести.
Согласно СанПиН 2.6.1.2523-09 «Нормы радиационной безопасности» (НРБ-99/2009), выдвигаются следующие требования к защите от природного облучения в производственных условиях:
- Эффективная доза облучения природными источниками излучения всех работников, включая персонал, не должна превышать 5 мЗв в год в производственных условиях (любые профессии и производства).
- Средние значения радиационных факторов в течение года, соответствующие при монофакторном воздействии эффективной дозе 5 мЗв за год при продолжительности работы 2000 ч/год, средней скорости дыхания 1,2 м3/ч и радиоактивном равновесии радионуклидов уранового и ториевого рядов в производственной пыли, составляют:
- мощность эффективной дозы гамма-излучения на рабочем месте – 2,5 мкЗв/ч,
- ЭРОA Rn в воздухе зоны дыхания — 310 Бк/м3.
Радиоактивные строительные материалы постепенно выделяют радон, и в условиях замкнутого помещения при слабой вентиляции его концентрация может достигать опасных пределов.
Поэтому такие материалы как гранит рекомендуется использовать только для внешней отделки. Для внутренней отделки, как альтернативу, рекомендуется использовать неопасные материалы: керамогранит, искусственный камень, мрамор и другие.
Другая опасность, связанная с естественным радиоактивным фоном земли – выходы радона из грунта и скопление его, прежде всего, в нижних этажах зданий и сооружений.
Радон образуется в ядерных реакциях в недрах земли и по различным пустотам и трещинам поднимается на поверхность. Радиоактивный газ диффундирует через строительные материалы, проникает через щели и зазоры и накапливается в подземных пустотах и помещениях, в первых этажах зданий.
Для того, чтобы в помещении создалась высокая концентрация радона требуется ряд условий:
- Интенсивное поступление радона из грунта.
- Возможность для просачивания газа вовнутрь помещения.
- Застой воздушных масс в помещении.
Чтобы меньше радона поступало из грунта, следует выбирать безопасное место для строительной площадки.
Радон интенсивно выделяется из геологически молодых горных пород. Таких зон много на Кавказе, на Алтае, на Хехцире, в других регионах России (рис. 1).
Рис. 1. Карта радоновых выходов на территории России
Границы опасных зон могут изменяться. Это может быть связано с сейсмической активностью и с градостроительством. Так, фундаменты высотных зданий словно вылавливают радон из земли, повышая его концентрацию в поверхностных слоях.
Следовательно, нужно сверяться с картой, но при этом необходимо провести контрольные замеры по радону. Обычный дозиметр для этого не подходит. Используется специальная аппаратура, определяющая уровень экспозиционного облучения, и обычно приглашаются специалисты, занимающиеся радоновым контролем.
Учитывая, что в городах сложно найти «чистую» площадку, требуется предпринимать меры по антирадоновой защите:
- Герметизация подвальных помещений и нижних этажей зданий.
- Вентиляция помещений.
- Использование нижних этажей и подвалов, как технических помещений, в качестве автопарковок и для других нежилых целей.
Исследование радоновой угрозы следует проводить на периоде геостройизысканий, перед принятием здания в эксплуатацию и периодически, особенно когда ранее эти исследования не проводились.
Радиоактивная угроза при строительстве и эксплуатации зданий и сооружений может быть связана не только с радоновой угрозой. Источники радиации могут быть следующие:
- Связанные с залеганием урановых руд.
- Связанные с антропогенным радиоактивным загрязнением окружающей среды.
- Неизвестного происхождения.
В загрязнённом строительном материале может содержаться природный уран и другие изотопы, источники альфа-, бета- и гамма-излучения.
Антропогенные источники радиации могут возникнуть вследствии захоронения радиоактивных отходов, после техногенных аварий с радиоактивными выбросами (как после Чернобыля и Фокусимы), после проведения испытаний ядерного оружия.
Так, до сих пор представляет опасность Семипалатинский ядерный полигон и обширные территории, подвергшиеся от него загрязнению (рис. 2).
Рис. 2. Радиационное загрязнение территории России
Некоторые радиоактивные изотопы использовались в различной технике и приборах, прежде всего, военного назначения. Поэтому, когда под застройку используются территории, ранее занимаемые военными, следует тщательно исследовать грунт на наличие радиоактивного загрязнения.
Так, например, когда около 10 лет назад в Хабаровске планировали построить спортивный комплекс на месте бывшей воинской части, в грунте было обнаружено 5 источников радиоактивного загрязнения (не говоря уж о химическом загрязнении исследуемого грунта).
На некоторых территориях сложно определить причину повышенного радиоактивного фона. Некоторые камни и другие предметы могут становиться опасными от наведенной радиации. Это могут быть аномалии земного и неземного происхождения, которые также следует учитывать в градостроительстве.
Существуют карты аномальных территорий и конкретные исследования по разным городам России (рис. 3).
Рис. 3. Карта аномальных зон России и соседних государств
Реально аномалий гораздо больше, чем отражено на этой карте. И особенно там, где только планируется массовая застройка, следует проводить исторические исследования, привлекать специалистов, чтобы потом не столкнуться с этими аномалиями, ведь при строительстве и эксплуатации объектов в аномальных зонах стандартной антирадиационной защиты недостаточно, здесь требуется помощь специалистов для выработки оптимальных решений.
Общемировая тенденция такова, что опасности, связанные с радиацией естественного и искусственного происхождения, с каждым годом возрастают. Поэтому следует предпринимать эффективные меры по отслеживанию и предотвращению угроз и создавать объекты с повышенной радиационной защитой.
Автор: Алексей Гессе, консультант по строительной экспертизе, г. Хабаровск

Экология и охрана природы : Радионуклиды в строительных материалах
- Введение
- Гл.1. Понятие радионуклидов, их содержание в строительных материалах. Вклад в общую дозу
- Гл.2. Требования НРБ-99 и ГОСТ к содержанию радионуклидов в строительных материалах
- 2.1 ГОСТ 30108-94
- 2.2 НРБ-99. Паспорт качества
- Гл.3. Сравнительная характеристика строительных материалов по содержанию радионуклидов и экологичности
- 3.1 Челябинские строительные материалы
- 3.2 Российские строительные материалы
- 3.3 Зарубежные строительные материалы
- Заключение
- Список использованных источников
- Приложение
Введение
Радиационная безопасность является одним из важнейших гигиенических критериев экологической безопасности материала и представлена в медицине в разделе радиационной гигиены человека.
Экологичность строительных и отделочных материалов в последние годы стала одним из главных маркетинговых ходов производителей в рекламе своих товаров. Многие строительные и отделочные материалы продавцы и производители называют экологичными, несмотря на то, что в их состав входят токсичные для человека составляющие.
В середине 90-х годов, когда участились случаи повышенного содержания радона в сдаваемых в эксплуатацию домах, специалисты пришли к выводу, что это связано с повышенным содержанием радионуклидов в строительных материалах. В результате был значительно изменен порядок радиационного контроля стройматериалов.
Радиоактивность материала может быть связана с его месторождением или получена дополнительно с использованием сырья из каменоломен, карьеров и т.п., расположенных вблизи зон техногенного радиационного загрязнения литосферы. Таким образом, радиационное загрязнение строительных материалов может быть обусловлено не только его происхождением, но и привнесением в него из окружающей среды радиоактивных веществ-загрязнителей. В каждом случае это отрицательное свойство можно диагностировать по химическому составу материала.
Цель данной работы — рассмотреть сущность радионуклидов в строительных материалах, изучить требования ГОСТ и НРБ-9, а также провести сравнительную характеристику челябинских, российских и зарубежных строительных материалов.
Глава 1. Понятие радионуклидов, их содержание в строительных материалах. Вклад в общую дозу
Любое минеральное сырье, используемое в строительстве, содержит радиоактивные вещества в различной концентрации. Это так называемая природная радиоактивность. Она присутствует как в сырье (щебень, песок, цемент и пр.), так и в готовой продукции (кирпич, керамическая плитка, железобетонные конструкции, товарный бетон и растворы, искусственные камни, облицовочные плиты).
Большинство строительных материалов непосредственно являются природными компонентами экосистемы и поэтому имеют свои специфические радиационные свойства. Например, все строительные материалы минерального состава содержат в различном количестве химические элементы, изотопы которых радиоактивны. Наиболее опасными в этом отношении могут быть строительные материалы из природного камня и материалы на основе минеральных вяжущих. Кроме того, необходимо знать, что для одного и того же вида материала показатели по радиоактивности могут отличаться в зависимости от местоположения месторождения, поэтому возможен некоторый разброс данных от средних фоновых значений. Радиационную активность строительных материалов можно прогнозировать по их химическому составу и содержанию в них называемых элементов тяжелых металлов, изотопы которых наиболее радиационно активны.
Естественная радиоактивность строительных материалов обусловлена содержанием в них природных радионуклидов, а именно: радия-226, тория-232, калия-40.
В трех радиоактивных семействах: урана (238U), тория (232Th) и актиния (235АС) в процессах радиоактивного распада постоянно образуется 40 радиоактивных изотопов. Средняя эффективная эквивалентная доза внешнего облучения, которую человек получает за год от земных источников, составляет около 0.35 мЗв, т.е. чуть больше средней индивидуальной дозы, обусловленной облучением из-за космического фона на уровне моря. [5]
Однако уровень земной радиации неодинаков в различных районах. Так, например, в 200 километрах к северу от Сан-Пауло (Бразилия) есть небольшая возвышенность, где уровень радиации в 800 раз превосходит средний и достигает 260 мЗв в год. На юго-западе Индии 70 000 человек живут на узкой прибрежной полосе, вдоль которой тянутся пески, богатые торием. Эта группа лиц получает в среднем 3.8 мЗв в год на человека. Как показали исследования, во Франции, ФРГ, Италии, Японии и США около 95% населения живут в местах с дозой облучения от 0.3 до 0.6 мЗв в год. Около 3% получает в среднем 1 мЗв в год и около 1.5% более 1.4 мЗв в год.
Если человек находится в помещении, доза внешнего облучения изменяется за счет двух противоположно действующих факторов:
1) Экранирование внешнего излучения зданием.
2) Облучение за счет естественных радионуклидов, находящихся в материалах, из которого построено здание.
В зависимости от концентрации изотопов 40К, 226Ra и 232Th в различных строительных материалах мощность дозы в домах изменяется от 4 10-8 дО 12 10-8 Гр/ч. В среднем в кирпичных, каменных и бетонных зданиях мощность дозы в 2-3 раза выше, чем в деревянных.
В организме человека постоянно присутствуют радионуклиды земного происхождения, поступающие через органы дыхания и пищеварения. Наибольший вклад в формирование дозы внутреннего облучения вносят 40К, 87Rb, и нуклиды рядов распада 238U и 232Th (табл.1).
Среднегодовая эффективная эквивалентная доза внутреннего облучения

База данных по радиоактивности строительных и отделочных материалов, применяемых в московском регионе
Начиная с 1993 года в Лаборатории радиационного контроля «ЛРК-1 МИФИ» проводятся экспериментальные исследования радиоактивности строительных и отделочных материалов и сырья, используемых в Московском регионе. Получаемая в этих исследованиях информация и ее последующий анализ однозначно свидетельствуют о необходимости проведения эффективного входного радиационного контроля. Необходимость организации в Москве системы действительно эффективного и массового радиационного контроля строительных материалов и сырья обуславливается постоянно растущим объемом строительства в Московском регионе и вовлечением в этот процесс все большего числа поставщиков строительных материалов и сырья. При этом наблюдается сильный и постоянный рост использования так называемых престижных отделочных материалов из естественного камня или на его основе. Упомянутые материалы могут иметь весьма существенный радиационный фон и при длительном воздействии на человека по механизму внутреннего облучения могут вызвать негативные последствия для его здоровья. Отметим, что дозиметрический контроль внутри помещений с отделкой из таких материалов практически неинформативен в плане радиационной безопасности людей, находящихся в этом помещении. Таким образом, особую важность приобретает гамма-спектрометрический контроль образцов материалов из конкретных партий строительных материалов , а так же оперативный сравнительный анализ полученных результатов с учетом уже имеющейся информации. Для полного решения этой задачи в «ЛРК-1 МИФИ» была разработана база данных «Радиационные характеристики стройматериалов». Исходные данные базы представляют собой результаты ведущихся на низкофоновом полупроводниковом гамма-спектрометре измерений радиоактивности строительных и отделочных материалов, используемых в Московском регионе. Измерения ведутся с 1993 года и в настоящее время база содержит информацию о
2500 образцах материалов и сырья полученных от
200 поставщиков. Характеристики базы позволяют проводить статистический анализ заносимых в базу результатов измерений и служебной информации и оперативно организовывать запросы по различным параметрам. Разработан сетевой вариант эксплуатации базы данных, позволяющий заинтересованным лицам и организациям оперативно получать информацию о радиационном качестве (см. Приложение) строительных материалов и сырья. В настоящей базе применяется критерий Аэфф.м.
Одной из его важнейших составляющих здорового образа жизни является жилище, не только комфортное, но и безопасное. Проблема радиационной безопасности жилья может быть решена эффективно и сравнительно недорого, особенно если помнить об этом на всех этапах обустройства своего дома: при выборе участка под застройку, при строительстве, ремонте и отделке, при ландшафтном благоустройстве (насыпные газоны, покрытия игровых и спортивных площадок, тротуарная плитка и т.п.) Теперь все, кто занимается благоустройством собственного жилья, могут получить справку о радиационном качестве стройматериалов, поставляемых на территорию Московского региона, из постоянно пополняемой базы данных ЛРК-1 МИФИ. База содержит результаты сертификации стройматериалов за последние 7 лет. Рекомендуем Вам также обязательно ознакомиться с разделами ниже на этой странице.
Для вызова необходимой Вам информации нажмите на соответствующую стройматериалу область на графике.
Вы можете также загрузить базу данных в свой компьютер (формат MS Excel 97, zip-архив, 25Kb).
Общие замечания по базе данных.
1. Из представленных данных следует, что основная масса стройматериалов относится к 1-му классу (удельная эффективная активность естественных радионуклидов Aэфф в них не превосходит 370 Бк/кг), т.е. радиационно безопасна и пригодна для всех видов строительства без ограничений. В первую очередь, это песок, цемент, кирпич, мрамор. Следует подчеркнуть, что вопреки распространенному заблуждению, кирпич из Белоруссии нисколько не «испачкан» продуктами аварии на ЧАЭС.
2. С другой стороны, попадаются и такие марки стройматериалов, которые относятся ко 2-му классу (Aэфф от 370 до 740 Бк/кг) или даже к 3-му классу (Aэфф от 740 до 1500 Бк/кг). В основном, это граниты и щебни. Такие материалы вполне легально представлены в продаже, однако их нельзя применять при строительстве жилых помещений, их ремонте или отделке.
3. Неожиданно высокую естественную радиоактивность могут иметь некоторые специальные стройматериалы. Например, это армирующие сетки из цементостойкого стекловолокна для тонкостенных конструкций.
О реалиях жизни. Проверка материала по нашей базе имеет смысл в том и только в том случае, если Вы абсолютно уверены в торговой марке проверяемого материала. Дело в том, что реальная ситуация на рынке стройматериалов такова, что в документах может быть указан один материал, а фактически предлагаться другой. Иногда об этом не подозревает даже сам продавец!
В московских магазинах стройматериалов можно найти полированную плитку, выполненную по евростандарту и, очевидно, предназначенную для внутренней отделки помещений, из гранита марки «Токовский», который, как известно, относится к 3 классу радиоактивности, т.е. использование которого разрешено только в качестве материала для дорожного строительства вне населенных пунктов. При этом этикетки с надписью «Токовский» или «3 класс» на них нет, а поднесенный к плиткам бытовой дозиметр покажет около 20 мкР/час, т.е. не отразит реальной опасности материала.
Конечно, гранит можно достаточно надежно идентифицировать по внешнему виду и избежать приобретения проблемной марки, однако во многих других случаях — например, для щебня из того же самого гранита, это сделать намного сложнее.
На одно из крупных московских предприятий, производящее бетонные изделия и давно сотрудничающее с ЛРК-1 МИФИ, поступила очередная промышленная партия щебня. И по внешнему виду, и по сопроводительным документам из карьера, и по результатам измерений образцов предыдущих партий нашей лабораторией щебень этой марки относился к 1-му классу радиоактивности. Однако в данной партии его радиоактивность оказалась в 2 раза выше, т.е. фактически это оказался щебень неизвестной марки и неизвестного происхождения. Случаи подобной неразберихи в поставках стройматериадов не единичны.
Поэтому, посмотрев наши таблицы, не обольщайтесь — под маркой Вашего мрамора может скрываться совсем другой гранит.
Как обрести уверенность в завтрашнем дне (и радиационной чистоте моих стройматериалов)? Что делать, если интересующего материала в базе нет?
Если интересующего стройматериала нет в нашей базе данных, или нет уверенности в его марке, в особенности если он приобретен по случаю — Вы можете заказать исследование радиационного качества своего материала в ЛРК-1 МИФИ. Результат исследований имеет 2 формы, существенно различающиеся по стоимости: Протокол измерений и Свидетельство радиационного качества.
Свидетельство имеет юридическую силу. Оно необходимо юридическим лицам на каждую партию стройматериалов при их покупке и продаже, а также для целей импорта и экспорта. Для обретения собственного спокойствия Вы, как конечный потребитель, вполне можете ограничиться Протоколом измерений одной пробы, что обойдется значительно дешевле. А Свидетельство может Вам потребоваться только для предъявления обоснованных претензий Продавцу в соответствии с Законом о правах потребителей, если материал окажется не устраивающего Вас класса.
Потратьте доли процента от стоимости приобретаемых стройматериалов на свидетельство их радиационной безопасности — и будьте здоровы!
Об участках под застройку и ландшафтном благоустройстве.
Известно, что на освоенных территориях Москвы и Подмосковья естественная радиоактивность достаточно мала.
Однако всегда есть вероятность того, что на конкретном участке могут случайно оказаться техногенные источники радиоактивности. Кроме того, ландшафтное благоустройство часто связано с привозным грунтом и иными материалами, которые могут оказаться неприемлемо радиоактивными. Убедиться в безопасности участка не слишком сложно — достаточно отобрать несколько проб в «чувствительных» точках, и после лабораторных измерений на высокоточной аппаратуре сделать вывод об отсутствии техногенной радиоактивности. Если же таковая будет обнаружена, то возможно обоснованно предположить ее происхождение и оценить реальную опасность для здоровья. Вот несколько случаев из нашей практики.
Случай 1-й. На одном из приусадебных участков Подмосковья в 1993 г. планировалось использовать для пешеходных дорожек брусчатку все из того же Токовского гранита. Несмотря на то, что согласно сертификату (украинского происхождения) материал имел 1-ый класс, Заказчик решил подстраховаться заключением ЛРК-1 МИФИ, и, получив свидетельство о 3-ем классе, благоразумно отказался от такой брусчатки.
Случай 2-й. Материал для покрытия элитных теннисных кортов, доставленный из Швеции в 1999 г., имел Aэфф = 2540 ± 115 Бк/кг (3 класс). В данном случае удалось избежать даже разгрузки транспорта с этим материалом.
Случай 3-й. Самый поучительный случай — с насыпным газоном из привозного чернозема в . вском районе Московской области (август 1999 г.) После того, как при приемке коттеджа в эксплуатацию областная СЭС обнаружила в пробах грунта из этого газона повышенное содержание радионуклида цезий-137, владелец обратился в ЛРК-1 МИФИ. Результаты анализа грунта, полученные в лаборатории, оказались для него весьма неприятными:

Радиоактивность строительных материалов
Мы все немало времени проводим внутри помещений – отдыхаем и работаем дома, трудимся в офисе или на производстве, расслабляемся в культурных заведениях. Наше самочувствие и здоровье во многом зависят от того, насколько безопасен внутренний микроклимат помещения. В частности, не использовались ли при возведении и ремонте здания радиоактивные строительные материалы, которые могут повлиять на продолжительность жизни.
Естественная радиация в природе существовала всегда. Один из ее источников – излучение земной коры. В ее толще залегают породы, из которых производят многочисленные строительные материалы. Многие из них до сих пор хранят следы радиоактивного прошлого нашей планеты.
К наиболее вредным строительным материалам причисляют:
Все они выделяют достаточно большое количество радона, поэтому для внутренней отделки перечисленные материалы лучше не использовать. Кирпич, бетон и дерево в этом смысле считаются сравнительно безопасными. Причем радиоактивность силикатного кирпича ниже, чем красного. Относительно невысока удельная активность радионуклидов у карбонатных горных пород – мрамора и известняка. Средним уровнем естественной радиоактивности отличаются песок и гравий. Уровень радиации стекловолокна, фосфогипса обычно находится в допустимых пределах, но ради собственной безопасности стоит проверять и их.
Радиоактивность древесины выше, чем кирпича.
Это заблуждение появилось после того, как люди начали измерять уровни радиационного фона внутри домов, построенных из этих материалов. При этом самыми высокими оказались показатели, снятые в деревянных строениях. На самом деле причина этого в том, что большинство деревянных домов – малоэтажные, то есть комнаты там расположены близко к земле, которая считается основным естественным источником радона.
Бетон
Радиоактивность этого материала многократно ниже, чем у кирпича. К тому же, основная его часть обычно сконцентрирована в фундаменте дома. Еще один аргумент: на крупных предприятиях по производству бетона безопасность продукции контролиуют, а в качестве сырья используют щебень, добытый из сертифицированных мест, но тем не менее опасность, связанная с радиоактивностью наполнителей для изготовления этого строительного материала, существует. Поэтому, если вы замешиваете бетон самостоятельно, желательно проверить используемый для этого щебень и песок дозиметром. Это поможет убедиться в том, что данный материал можно использовать при строительстве жилых зданий. Проверка требуется в основном гранитному щебню, так как гравийный материал в зону риска практически не входит.
В чем опасность радиоактивных строительных материалов?
Радиоактивность некоторых используемых в строительстве материалов может нанести вред здоровью. При распаде радионуклидов, входящих в их состав (радия-226, калия-40, тория-232), выделяется радиоактивный газ радон. Его объемная активность в воздухе непроветриваемых помещений (подвалов, подземных станций метро), бывает в 10 и более раз выше, чем в открытой атмосфере.
Радон выделяется в воздух в два этапа. Сначала он проникает из материала в поры элементов строительного объекта. Затем постепенно распространяется через микрощели и трещины. При этом часть его распадается и попадает в воздух помещения. Больше всего радона скапливается на первых этажах зданий.
Опасность радиоактивных строительных материалов в том, что исходящее от них излучение может значительно ухудшать экологию помещения. Вследствие этого людей беспокоят:
- головные боли,
- аллергия,
- плохое самочувствие.
Более того, поступая в легкие, радон распадается с выбросом альфа-частиц. Это может вызывать микроожоги тканей и их злокачественное перерождение.
Как проверить стройматериалы на радиоактивность?
Уровень природной радиоактивности строительных материалов ограничивается нормами радиационной безопасности (НРБ –99/2009). Этот нормативный документ устанавливает три класса стройматериалов с разной величиной эффективной удельной активности природных радионуклидов (Аэфф). Так, для строительства и ремонта жилых и общественных зданий допускается использовать материалы с Аэфф не более 370 Бк/кг.
К сожалению, сегодня никто не может гарантировать, что приобретаемые вами стройматериалы, а также обои, керамическая плитка, краска, штукатурка безопасны и ничего не излучают. Если вы покупаете материалы по цене ниже средней и не можете сказать, что уверены в поставщике на все 100 %, проверьте их точным дозиметром
Дозиметрия поможет вам аргументированно отклонить даже выгодное предложение о покупке вредных строительных материалов, которые иногда поступает от недобросовестных продавцов и поставщиков. Кроме того, с этим прибором вы легко проверите свою квартиру, офис, производственное помещение на предмет радиационной безопасности.
По вопросам проведения радиологических исследований обращаться по адресу:
ФГБУ «Ставропольская МВЛ»,
г. Ставрополь, Старомарьевское шоссе, 34, тел.: (8652) 28-16-53

Станьте первым!