Логотип сайта Все для стройки
Все для стройки

  • Виды материалов
    • Бетон
    • Кирпич
    • Клей
    • Крепеж
    • Лакокрасочные материалы
    • Лесоматериалы
    • Листовые материалы
    • Строительные блоки и плиты
    • Строительные инструменты
    • Строительные материалы
    • Сухие строительные смеси
    • Теплоизоляция
    • Утеплители
  1. Главная
  2. »
  3. Строительные материалы

Требования к строительным материалам

26.09.2019 Строительные материалы

  1. Требования, предъявляемые к строительным материалам
  2. Гигиена содержания сельскохозяйственных животных
  3. Чтобы стройматериалы были безопасными
  4. Требования безопасности, предъявляемые к строительным материалам и изделиям
  5. Требования к строительным материалам

Требования, предъявляемые к строительным материалам

Стекло и стеклянные изделия

Облицовочные и отделочные материалы

Асфальтовые растворы и бетоны

Кровельные и гидроизоляционные материалы

Тепло- и. звукоизоляционные материалы

Полимерные строительные материалы и изделия

Лесоматериалы и деревянные строительные изделия

Металлы и металлоизделия

Бетонные и железобетонные изделия

Каменные материалы и изделия

Бетоны и растворы

Классификация строительных материалов

Требования, предъявляемые к строительным Материалам

Тема: Строительные материалы и изделия

2.1Бетоны и их физико–механические свойства

2.3 Растворы и их физико–механические свойства

Строительные материалы, изделия — это материальная основа строительства. Затраты на них достигают 50 % общей стоимости строительно-монтажных работ. Грамотное и экономное расходование материалов позволяет существенно сократить стоимость строительства в целом. Для того чтобы правильно использовать разнообразные строительные материалы, надо знать их свойства и назначение.

Все строительные материалы, выпускаемые для производства строительно-монтажных работ, должны отвечать соответствующим нормативным требованиям.

Основные требования, предъявляемые к строительным материалам, зависят от условий их работы в конструкциях и от характера технологических процессов, протекающих в помещениях. Особыми требованиями являются:гигиенические, эксплуатационные, конструктивные и др.

.Материалы, используемые в несущих конструкциях, должны обладать необходимой прочностью, атмосфероустойчивостью, малой теплопроводностью, звукопоглотительной способностью. Материалы для полов, подвергающихся значительным механическим и химическим воздействиям, должны быть водонепроницаемыми, химически стойкими, гладкими, но нескользкими, теплыми, удароустойчивыми.

1.2 Классификация строительных материалов

В строительстве используют большое количество разнообразных материалов. По назначению строительные материалы принято делить на следующие группы:

•вяжущие строительные материалы (воздушные вяжущие, гидравлические вяжущие).

В эту группу входят различные виды цементов, известь, гипс.

• стеновые материалы. К этой группе относятся естественные каменные материалы, керамический и силикатный кирпич, бетонные, гипсовые и асбестоцементные панели и блоки, ограждающие конструкции из стекла и силикатного ячеистого и плотного бетона, панели и блоки из железобетона,

• отделочные материалы и изделия — керамические изделия, а также изделия из архитектурно-строительного стекла, гипса, цемента, изделия на основе полимеров, естественные отделочные камни,

• тепло- и звукоизоляционные материалы и изделия — материалы и изделия на основе минеральных волокон, стекла, гипса, силикатного вяжущего и полимеров,

• гидроизоляционные и кровельные материалы— материалы и изделия на основе полимерных, битумных и других связующих, асбестоцементный шифер и черепица,

• герметизирующие — в виде мастик, жгутов и прокладок для уплотнения стыков в сборных конструкциях,

• заполнители для бетона естественные, из осадочных и изверженных горных пород в виде песка и щебня (гравия), и искусственные пористые,

• штучные санитарио-технические изделия и трубы — из металлов, керамики, фарфора, стекла, асбестоцемента, полимеров, железобетона.

Классификация строительных материалов по назначению позволяет выявить наиболее эффективные материалы, определить их взаимозаменяемость и после этого правильно составить баланс производства и потребления материалов.

По виду исходного сырья строительные материалы делятна:природные и искусственные, минеральные и органические.

Природные, или естественные, строительные материалы и изделия получают непосредственно из недр земли или путем переработки древесных материалов. Этим материалам при изготовлении изделий из них придают определенную форму и рациональные размеры, не изменяя их внутреннего строения, химического и вещественного состава. Чаще других из природных используют древесные и каменные материалы и изделия. Кроме них, в готовом к употреблению виде или при механической обработке можно получить природный битум или асфальт, камыш, торф, костру и другие природные продукты.

Искусственные строительные материалы разделяют на:

• безобжиговые — материалы, отвердевание которых происходит при обычных, сравнительно невысоких температурах с кристаллизацией новообразований из растворов, а также материалы, отвердевание которых происходит в условиях автоклавов при повышенных температуре 175. 200 °С) и давлении водяного пара 0,9. 1,6 МПа),

• обжиговые — материалы, формирование структуры которых происходит в процессе их термообработки в основном за счет твердофазовых превращений и взаимодействий.

Указанное деление является отчасти условным, ибо не всегда возможно определить четкую границу между материалами. В конгломератах безобжигового типа цементирующиевяжущие представлены неорганическими, органическими, полимерными, а также смешанными (например, органоминеральными) продуктами.

К неорганическим вяжущим относят: клинкерные цементы, гипсовые, магнезиальные и др.,

к органическим — битумные и дегтевые вяжущие вещества и их производные,

к полимерным — термопластичные и термореактивные полимерные продукты.

Полимерные вяжущие вещества — важные компоненты при изготовлении полимербетонов, строительных пластмасс,

стеклопластиков и других, нередко называемых композиционными материалами.

Классификация искусственных строительных материалов (конгломератов), объединяемая общей теорией, расширяется с появлением новых вяжущих веществ, разработкой новых искусственных заполнителей, новых технологий или существенной модернизацией существующих, созданием новых комбинированных структур.


Гигиена содержания сельскохозяйственных животных

Помещения для животноводческих ферм и комплексов могут быть разнообразными по своей конструкции, устройству и оборудованию. Однако все они должны отвечать общим зоогигиеническим требованиям, и прежде всего обеспечивать оптимальные условия микроклимата. Во многом это зависит от гигиенических свойств строительных материалов и теплозащитных качеств наружных ограждений.

Требования к строительным материалам.

При зоогигиенической оценке строительных материалов существенное значение имеют их теплопроводность, теплоемкость, гигроскопичность, паро- и воздухопроницаемость.

Теплопроводность — способность материала передавать тепло с более нагретой стороны на менее нагретую. Теплопроводность каждого материала характеризуется коэффициентом теплопроводности. Он равен количеству теплоты (в килокалориях), которое в течение 1 ч проходит через 1 м 2 материала толщиной 1 м при разности температур 1 °С на противоположных поверхностях. Коэффициент теплопроводности уменьшается с повышением пористости материала и возрастает с увеличением его объемной массы. Одновременно теплопроводность одного и того же материла зависит и от степени его влажности, чем она выше, тем больше теплопроводность.

Строительные материалы наружных ограждений с низким коэффициентом теплопроводности надежнее обеспечивают оптимальное тепловое состояние воздуха животноводческих помещений. Для сравнения: коэффициент теплопроводности тяжелого бетона объемной массой 600 кг/м 3 — 0,21, а сосновой пластины той же объемной массы 0,15. Следовательно, второй материал предпочтительнее.

Теплоемкость — важное гигиеническое свойство материала. Теплоемкость — это количество теплоты, поглощаемой телом при нагревании на 1 °С. Коэффициент теплоусвоения показывает способность материала воспринимать тепло при колебании температуры на его поверхности. Строительные конструкции с высоким коэффициентом теплоусвоения поглощают с поверхности тела животных большое количество теплоты, как это, например, имеет место при соприкосновении тела животного с поверхностью бетонного пола.

Гигроскопичность — свойство материала впитывать и удерживать в себе воду и водяные пары.

Паропроницаемость материала измеряется массой (в граммах) водяных паров, проходящих в течение 1 ч через материал площадью 1 м 2 и толщиной 1 м при разности в упругости водяных паров у противоположных поверхностей 1 мм ртутного столба. При выборе материла ограждающих конструкций помещений обязательно учитывают его паропроницаемость, так как задержка влаги в материале — основная причина сырости стен и покрытий.

Воздухопроницаемость материала способствует более высоким теплозащитным свойствам. Значительный температурный градиент между воздухом помещения животноводческих помещений и ограждающими конструкциями вызывает нарушение теплорегуляции животного организма и выпадение конденсата на внутренней поверхности ограждений. Экспериментально установлено, что температурный градиент между температурой воздуха помещения и температурой поверхности ограждений для животных должен быть в пределах 3 °С.

Для сохранения тепла в животноводческих помещениях и предупреждения выпадения конденсата на внутренней поверхности ограждений нужно использовать строительные материалы с малой объемной массой, низким коэффициентом теплопроводности, повышенной удельной теплоемкостью, малым коэффициентом теплоусвоения, средней паро- и воздухопроницаемостью.

Коэффициент теплопроводности ограждений животноводческих помещений желательно иметь не выше 0,8-1. Расчеты показывают, что снижение коэффициента теплопроводности стен с 1 до 0,6 и покрытий с 0,7 до 0,4 дает возможность снизить теплопотери через ограждающие конструкции здания (в коровниках на 30 %, свинарниках — на 33, птичниках — на 35 %) и годовой расход тепла (соответственно на 38, 27-42 и 14-23 %).

Обеспечить оптимальный температурно-влажностный режим в животноводческих помещениях представляется возможным лишь при наличии эффективной теплозащиты ограждающих конструкций. Надежная теплоизоляция ограждающих конструкций животноводческих и птицеводческих помещений в переходный и зимний периоды дает возможность рационально использовать биологическое тепло животных, а в летнее время защищать их от действия высоких внешних температур.

Строительные материалы для ограждающих конструкций должны иметь достаточный коэффициент термического сопротивления. Так, в районах с устойчивыми низкими температурами (расчетная зимняя температура — 25-30 °С) необходимо использовать для ограждающих конструкций стен строительные материалы коэффициентом термического сопротивления 2-2,5. В настоящее время во многих животноводческих помещениях проектом предусмотрены параметры термического сопротивления стен на уровне 0,8-1,1 и покрытий 1,3-1,4. Животноводческие фермы и комплексы строят с использованием следующих индустриальных ограждающих конструкций: двухслойные стеновые панели ПСЛ, СПСЛ из легких бетонов (керамзитобетона, керамзитопенобетона, аглопоритобетона, арболита), трехслойные железобетонные стеновые панели ПС, облегченные железобетонные плиты ПР, СПР, СПИ, комплексные железобетонные плиты покрытия КП, облегченные многослойные из асбоцементных волнистых листов (ОВ-5,5, ОВ-6, ОВ-7,5, СК-40, ВУ-2).

Отмеченные выше типы ограждающих конструкций имеют довольно высокие теплозащитные свойства: коэффициенты термического сопротивления стен в зависимости от параметров внутреннего и наружного воздуха составляют: для коровников — 1,1-1,3, для свинарников — 1,3-1,5, птичников — 1,5-3,9, покрытий соответственно 2-2,2, 2,2-2,5 и 1,5-3,2.

В качестве теплоизоляционного материала в многослойных ограждающих конструкциях используют минеральную вату, стекловату, мешкоперлит, струнит (вермикулит), пенополистерол ПСБС, фенольно-резольный пенопласт ФРП и другие новые эффективные материалы.

Перспективно применение пластмасс, экструзионных асбоцементных панелей и плит, стеклопластика, алюминия и других строительных материалов в качестве теплоизоляционного. Они обладают низкой теплопроводностью, отличаются прочностью, водонепроницаемостью, устойчивы против химических, физических и бактериологических воздействий, срок их службы довольно высок.

Следует иметь в виду, что улучшение теплозащитных свойств ограждающих конструкций требует дополнительных затрат, поэтому в каждом конкретном случае целесообразность их применения должна быть экономически обоснована. Практика эксплуатации животноводческих ферм и комплексов показывает, что экономически оправданно использование строительных материалов с повышенными теплоизоляционными свойствами не только для районов с низкими зимними расчетными температурами, но и для южных районов страны, для того чтобы в летнее время предотвратить губительное влияние высоких температур на организм животных.

Требования к отдельным элементам здания. Фундамент. Это подземная часть здания, являющаяся опорой всех несущих конструкций постройки. Фундамент здания должен противостоять разрушительному действию влаги и низких температур и быть прочным, устойчивым и долговечным. Фундаменты делают непрерывным (ленточным) по периметру всех стен или прерывистым в виде отдельных столбов. Наименьшая высота цоколя (верхней части фундамента, возвышающейся над землей) 20-30 см. Чтобы предохранить стены от увлажнения на внутренней поверхности, между ними и цоколем помещают пароизоляционный слой из водонепроницаемых пленочных покрытий (толь, рубероид).

Стены. Они должны быть прочными, сухими, не промерзать в зимний период. Стены животноводческих и птицеводческих помещений возводят из малотеплопроводных и достаточно пористых, обеспечивающих хорошую воздухопроницаемость материалов (бетон, керамзитобетон, кирпич, железобетонные панели). Лучшими в теплотехническом отношении являются легкие или крупнопористые бетоны (ячеистый бетон). По конструкции панели бывают однослойными — из легких и ячеистых бетонов, двухслойными — из железобетонной плиты и утеплителя, трехслойными — из двух железобетонных плит и расположенного между ними утеплителя.

В районах, богатых лесом, стены возводят из древесины. При строительстве следует также широко использовать местные строительные материалы — саман, камыш, шлакобетон, ракушечник и др.

Стены должны быть гладкими, без щелей, оштукатуренными, периодически их необходимо очищать от пыли и белить.

Окна. Их устройству следует уделять особое внимание. Окна обеспечивают естественное освещение помещений, но через них теряется значительное количество тепла. При сильном ветре потери тепла увеличиваются в 2-3 раза. Окна с двойными рамами делают в родильных отделениях и профилакториях, телятниках, свинарниках, маточниках, а также во всех помещениях в климатических районах с суровым зимним климатом, что сокращает потери тепла на 70 % и улучшает освещенность помещений за счет уменьшения образования льда на стеклах. Снизить трудоемкость изготовления и монтажа оконных проемов почти в 3 раза позволяет использование оконных рам в виде панелей из светопрозрачного полиэфирного стеклопластика. Стекла окон обязательно периодически очищают от грязи и пыли.

Потолки. Они отделяют помещение от крыши и в значительной степени способствуют созданию оптимального температурно-влажностного режима. В зимнее время потолки препятствуют отдаче тепла через крышу, а летом в сильную жару предохраняют помещения от нагревания.

Потолки должны быть хорошо утепленными, сухими, ровными, достаточно прочными и удобными для дезинфекции. Делают их из материалов с низкой теплопроводностью и высокой влагоемкостью. Лучшими являются деревянные потолки. Потолки из бетонных и железобетонных плит и кирпича не удовлетворяют зоогигиеническим требованиям, так как они конденсируют водяные пары и требуют значительного утепления. Конструкция потолков может быть разной. В животноводческих помещениях, строящихся в климатических районах с расчетной зимней температурой ниже — 25 °С, используют горизонтальные потолки. Они оправдывают себя и в более теплых климатических зонах.

Полы. Этот элемент животноводческих помещений играет исключительно важную роль в создании оптимального микроклимата, повышении продуктивности животных, укреплении их здоровья. Полы должны удовлетворять следующим требованиям: быть теплыми, сухими, прочными, сплошными, эластичными, водонепроницаемыми, нескользкими, удобными для эффективной дезинфекции, устойчивыми к действию дезинфицирующих средств. Полы настилают непосредственно на утрамбованный грунт через влагоизоляционный слой.

От водонепроницаемости пола в значительной мере зависит влажностный режим помещения. Через водопроницаемые полы увлажняется грунт, увеличиваются потери тепла. Пол поднимают над уровнем земли на 15-20 см. Важное значение в снижении теплопотерь здания имеет утепление полов, так как потеря тепла через пол составляет 30-40 % всех теплопотерь помещения. Коэффициент теплоусвоения полов не должен превышать 10-12, если он выше, то увеличиваются не только теплопотери помещения, но и затрачивается много физиологического тепла на прогрев пола, что приводит к переохлаждению организма и заболеваемости животных.

Читайте также:  Сыпучие строительные материалы

Одно из главных требований, предъявляемых к полам, — их долговечность, она зависит прежде всего от материала. Полы бывают глинобитными, глинощебневыми, деревянными, кирпичными, бетонными, асфальтовыми.

Наиболее полно всем зоотехническим, технологическим и зооветеринарным требованиям отвечают деревянные полы, но они быстро приходят в негодность и разрушаются в коровниках за 2- 3 года, а в свинарниках за 2 года. Глинобитные полы целесообразно делать в денниках конюшен, овчарнях, коровниках (при беспривязном содержании животных), в птичниках (при содержании на глубокой несменяемой подстилке). Бетонные полы очень прочны, легко дезинфицируются, но малопригодны из-за высокой теплопроводности. Асфальтовые полы холодные и быстро приходят в непригодность.

В последнее время широко применяются новые конструкции — из битуминизированных и керамических плит, полимербетона, керамзитобетона, резины, стали, чугуна, железобетона, пластмассы, оцинкованного металлического прутка, аглопорибетона. Полы из аглопорибетона наиболее эффективны в коровниках и свинарниках. По теплозащитным свойствам и прочности они превосходят деревянные полы.

Одно из важных требований полов — их чистота. Для сохранения чистоты полы делают решетчатыми или планчатыми — для животных, а также сетчатыми или планчатыми — для птицы. На таких полах навоз (помет) быстро проваливается или протаптывается вниз на транспортные механизмы для его удаления. Уклон пола для стока мочи и воды не должен превышать 1-2 см на один погонный метр пола.

Крыши и кровля. Устройству крыш и кровли уделяется большое внимание, так как через них теряется значительная часть тепла помещения. Для кровли используют материалы от новейших до очень давних — железо, шифер, черепицу, рубероид, щепу, камышит. При устройстве крыши надо учитывать важное требование — она должна выдержать тяжесть снежного покрова.

Формы или конструкции крыши могут быть разными: одно-, двухи четырехскатные. В крышах монтируют не только вентиляционные шахты, но и при широкогабаритных помещениях и «фонари» с целью достаточного и равномерного поступления естественного света.

При конфигурации животноводческих помещений наподобие букв Г, П, Т крыша должна быть сложной, то есть многоскатной. В районах с теплым, умеренным и умеренно холодным климатом животноводческие помещения целесообразно строить с совмещенной кровлей без чердаков. В качестве утеплителя рекомендуется применять стекловату, полистирол, пенопласт, фибролит и другие теплоизоляционные материалы слоем 12-18 см. Для совмещенной кровли применяют огнестойкие материалы: асбоцементные волнистые плиты, рулонные, армированные стекломатериалы.

Ворота, двери, тамбуры. Наружные ворота служат не только для входа и выхода животных, подвоза кормов, удаления навоза и др., но и являются наружными ограждениями помещений, через Которые теряется тепло. Поэтому и ворота, и двери должны быть плотными, утепленными и хорошо пригнанными. Ворота оборудуют тамбурами, защищающими помещение от проникновения в него зимой холодного воздуха. В помещениях, разделенных на секции, рекомендуется иметь не менее одного выхода из каждой секции. Размеры ворот должны обеспечивать быстрый вывод животных в случае пожара и позволять свободно заезжать машинам для раздачи кормов.

Ворота делают двупольные, двери однопольные с открыванием наружу или по ходу основного движения. Со стороны помещения порог делают на одном уровне с полом, снаружи порог приподнимают на 5-8 см для предупреждения затекания дождевых и талых вод.

Минимальные размеры ворот в помещениях для крупного рогатого скота, свиней, овец и птицы: ширина — 2,1 м, высота — 1,8 м, в конюшнях: ширина — 2,1 м, высота — 2,4 м. Размеры дверей для прохода и выхода животных внутри ворот для крупного рогатого скота: ширина — не менее 1 м, высота — 1,8 м, для лошадей: ширина — 1,2 м, высота — 2,4 м, для свиней: ширина — 1 м, для овец — ширина 0,8 м.


Чтобы стройматериалы были безопасными

Обеспечение экологической безопасности здания является одной из важнейших составных частей экологии человека. В настоящее время актуальность данной проблемы возросла из-за интенсивного внедрения полимерных строительных и отделочных материалов, малоизученных строительных материалов, содержащих различные химические добавки, нередко в виде промышленных отходов, широкого использования синтетических моющих, чистящих и косметических средств, что наряду с относительным повышением комфорта проживания существенно увеличило суммарную химическую нагрузку на организм человека и нередко делает жилую среду экологически опасной для человека.

Уровень химического загрязнения воздушной среды является одним из основных показателей, характеризующих безопасность и качество воздушной среды жилых и общественных зданий, т. к. воздушная среда помещений даже при относительно невысоких концентрациях токсичных веществ, но из-за большого их количества, из-за небольших объемов воздуха для разбавления и длительности пребывания человека может негативно влиять на его самочувствие, работоспособность и здоровье.

Относительно недавно главным компонентом химической нагрузки населения был загрязненный атмосферный воздух, но сегодня ситуация кардинальным образом изменилась. На первый план вышла проблема вредного влияния на воздушную среду в помещениях и, соответственно, на здоровье людей используемых в строительстве материалов, конструкций и изделий.

В результате проведенных исследований установлено, что источником 80 % химических веществ, обнаруженных в воздушной среде квартир, являются используемые строительные и отделочные материалы.

В настоящее время качество сырья для строительных материалов и самих строительных материалов и конструкций определяют действующие ГОСТы и ТУ. Вместе с тем в научно-технической документации, регламентирующей строительство и качество строительных материалов, отражена лишь небольшая доля отдельных гигиенических требований, в основном касающихся охраны труда и транспортировки стройматериалов, что не позволяет оценить степень их опасности для здоровья населения.

Имеется лишь один стандарт по определению и нормированию радионуклидов в строительных материалах — ГОСТ 30108-94 «Материалы и изделия строительные. Определение удельной эффективной активности естественных радионуклидов», введенный в действие Постановлением Госстроя РФ от 30.06.1994 № 18-48 (в ред. от 04.12.2000). В определенной мере это обуславливается слабой взаимосвязью гигиенических и строительных нормативных регламентаций, а также отсутствием единой методической системы проведения контроля экологической безопасности строительных материалов, которая должна включать критерии и методики оценки не только готовой продукции, но также и исходного сырья, используемого для производства строительных материалов.

Полимерные материалы в быту

На сегодняшний день наиболее полно изучены эколого-гигиенические свойства полимерных строительных материалов.

В строительстве номенклатура полимерных материалов, выпускаемых в нашей стране, насчитывает около 1000 наименований. Строительные полимерные материалы используются для покрытия полов, отделки стен, теплоизоляции наружной кровли и стен, гидроизоляции, герметизации и облицовки навесных панелей, изготовления оконных блоков и дверей, объемных элементов сборных домов и т. д. С каждым днем число таких материалов и область их применения расширяются. В последние годы в строительстве и быту все больше используются материалы, произведенные за рубежом, технология производства и гигиеническая характеристика которых неизвестны.

Масштабы и целесообразность применения полимеров в строительстве определяются тем, что они по многим свойствам превосходят природные материалы за счет низкой плотности, стойкости против коррозии, хороших тепло-, звуко- и электроизоляционных свойств, низких производственных расходов при изготовлении и транспортировке.

Однако наряду с положительными имеется ряд негативных сторон широкого использования полимерных материалов в быту. Это в первую очередь выделение ими в окружающую среду непрореагировавших мономеров, низкомолекулярных компонентов синтеза (эмульгаторов, растворителей, катализаторов), а также специальных веществ, вводимых в пластмассу для придания ей необходимых физико-механических свойств (пластификаторов, стабилизаторов, красителей, наполнителей, антистатических добавок).

Результаты многочисленных исследований показывают, что практически все полимерные материалы выделяют в воздушную среду те или иные токсические химические вещества, оказывающие вредное влияние на здоровье человека. Так, например, поливинилхлоридные материалы (поливинилхлориды ― один из самых распространенных видов полимеров, используемых при отделке современных жилых и общественных зданий (обои, линолеум, пленка, окна и др.)) являются источниками выделения в воздушную среду винилхлорида, бензола, толуола, этилбензола, циклогексана, ксилола, бутилового спирта, фталатов и других углеводородов.

Причем, как показали исследования, выделения ароматических углеводородов и фталатов в высоких концентрациях могут продолжаться в течение длительного времени ― до 1,5−2 лет, а в отдельных случаях ― до 3−5 лет. Наиболее токсичным и опасным веществом, выделяемым из ПВХ-материалов, является винилхлорид.

Другими из наиболее распространенных видов полимерных материалов, встречающихся практически в каждом доме и вызывающих наибольшее количество жалоб со стороны населения, являются древесно-стружечные плиты (ДСП) и мебель, изготовленная на их основе.

ДСП на основе карбамидных и фенолформальдегидных смол в настоящее время являются основным источником загрязнения воздушной среды жилых и общественных зданий фенолом и формальдегидом.

В настоящее время на деревообрабатывающих комбинатах г. Москвы предпринимаются меры по выпуску экологически чистых ДСП, среди которых обработка стружки акцепторами формальдегида, разработка новых видов связующих основ альбуминов, уретанов, покрытие ДСП защитными пленками.

Помимо выделения из ДСП, фенол и формальдегид могут поступать в воздушную среду из полимерных теплоизоляционных материалов, различных видов мастик, шпатлевок, пластификаторов, линолеумов, клеев и других материалов.

В настоящее время для внутренней отделки помещений широко используются декоративные плиты на основе вспененного полистирола.

Стирол также является высокотоксичным веществом, обладающим канцерогенным и мутагенным действием. Источником выделения стирола в воздушную среду помещений также являются следующие виды полимеров: полистирольная плитка, моющиеся обои на основе полистирола, линолеум, полимербетон, лакокрасочные покрытия, корпуса бытовых приборов на основе полистирола, одежда, обувь.

Ковровые изделия из химических волокон выделяют в значительных концентрациях стирол, изофенол, сернистый ангидрид.

Стеклопластики на основе различных смесей, применяемые в строительстве для звуко- и теплоизоляции, выделяют в воздушную среду значительное количество ацетона, формальдегида, фенола, метакриловой кислоты, толуола, бутанола, стирола. Лакокрасочные покрытия и клей-содержащие вещества также являются источниками загрязнения воздушной среды закрытых помещений такими веществами, как толуол, бутилметакрилат, бутилацетат, этилацетат, ксилол, стирол, ацетон, бутанол, этиленгликоль и др.

В таблице приведен перечень химических веществ, основным источником выделения которых в воздушную среду помещений жилых и общественных зданий являются строительные и отделочные материалы.

Приведенные данные свидетельствуют о необходимости проведения строгого контроля за экологической безопасностью не только строительных и отделочных материалов, но и сырья, используемого для их производства. Особое внимание следует обратить на использование в качестве сырья строительных материалов отходов различных производств.

Таблица

Химические вещества, выделяемые в воздушную среду помещений жилых и общественных зданий строительными и отделочными материалами


Требования безопасности, предъявляемые к строительным материалам и изделиям

В настоящее время в жилищном строительстве наблюдается подъём, и население нашей страны не менее активно ремонтирует как новые, так и старые квартиры. Каждый человек мечтает об уютной и комфортной обстановке в своем жилище. Планируя ремонт помещений, большинство собственников нуждаются в большом количестве разнообразных стройматериалов.

С каждым годом на рынке появляется все больше товаров сомнительного происхождения, включая и строительные материалы, соответственно о высоком, качестве строительных материалов и о долгом сроке их службы в таком случае говорить не приходится.

Мало того, многие виды строительных материалов, изготовленные ненадлежащим образом, откровенно опасны. И применение таких строительных материалов способно вызвать целый спектр серьезных заболеваний.

Самыми опасными в группе строительных материалов сегодня являются контрафактные напольные покрытия – линолеум, ламинат, ковролин. В них содержатся фенолформальдегидные смолы, способные вызвать онкологические заболевания.

Также ни о какой безопасности строительных материалов нельзя говорить и при повышенном содержании свинца, которое часто тоже встречается в товарах строительного назначения: это крайне опасно для жизни людей, пользующихся такой продукцией.

Гигиенические требования к полимерным и строительным материалам (ПСМ) регламентируются СанПиН 2.1.2.729-99 «Полимерные и полимерсодержащие строительные материалы, изделия и конструкции. Гигиенические требования безопасности», «Единые санитарно-эпидемиологические и гигиенические требования к товарам, подлежащим санитарно-эпидемиологическому надзору (контролю)».

Полимерные строительные материалы не должны выделять в окружающую среду летучие вещества в таких количествах, которые могут оказывать прямое или косвенное неблагоприятное действие на организм человека (с учетом совместного действия всех выделяющихся веществ).

Во время их эксплуатации в воздух помещений не должны выделяться из полимерных строительных материалов химические вещества, относящиеся к 1-му классу опасности. Содержание остальных веществ, выделяющихся из ПСМ не должно превышая предельно-допустимые концентрации (среднесуточные для атмосферного воздуха населенных мест или воздуха жилых помещений), ранее утвержденные Министерством здравоохранения СССР, Госкомсанэпиднадзором России, Министерством здравоохранения Российской Федерации.

При выделении из полимерных строительных материалов нескольких вредных химических веществ, обладающих суммацией действия, сумма отношений концентраций к их предельно допустимая концентрация не должна превышать единицу.

Полимерные строительные материалы не должны стимулировать развитие микрофлоры (особенно патогенной) и должны быть устойчивы к влажной дезинфекции при испоьзовании ПСМ для внутренней отделки лечебно-профилактических, санаторно-курортных, детских, дошкольных, школьных и других аналогичных зданий. Уровень напряженности электростатического поля на поверхности полимерных материалов в условиях эксплуатации помещений не должен превышать 15,0 кВ/м (при относительной влажности воздуха 30-60 %). Полимерные строительные материалы не должны ухудшать микроклимат помещений.

Коэффициент тепловой активности полов с покрытием из полимерных материалов должен быть не более 10 ккал/м2 час град. 1/2 для основных помещений жилых, детских и лечебно-профилактических зданий и не более 12 ккал/м2 час град. 1/2 для основных помещений общественных зданий.

Дозовые пределы величины интенсивности ионизирующего излучения для лиц из населения составляют 1 мЗв в год в среднем за 5 лет, но не более 5 мЗв/год.

Окраска и фактура полимерных строительных материалов должна соответствовать эстетическим и физиолого-гигиеническим требованиям. Каждому товару — свои правила.

При приобретении строительных материалов, необходимо знать, что Закон «О защите прав потребителей» распространяется только на тех, кто приобретает товары для собственных нужд. Потребление связано с приобретением какой-либо вещи, заказом работы или оказанием услуги. Еще один важный момент: товаром является не только предмет, работа или услуга, но и информация об этом товаре. При выборе строительных материалов и изделий потребителю в магазине должна быть представлена подробная информация об изготовителе с указанием юридического адреса, информация о товаре должна содержать сведения о материале, отделке, марке, типе, размере, сорте и других основных показателях, характеризующих товар, который вы покупаете, а также о способах, сроках, условиях доставки и передачи товара. На строительные материалы в определенной комплектности (садовые домики, хозяйственные постройки и др.) потребителю должна быть представлена информация, содержащая сведения о наименовании и количестве изделий, входящих в комплект, степени и способах их обработки (наличие и способ пропитки, влажность и способ сушки и др.). Закон предусматривает меры ответственности за представление неполной или недостоверной информации о товаре.

Читайте также:  Номенклатура строительных материалов

Есть свои тонкости и в продаже строительных материалов. Во-первых, продавец обязан осуществить предпродажную подготовку товара (осмотр, разбраковку и рассортировку товара, проверку комплектности, наличия необходимых для сборки деталей, схем сборки (если приобретаемый товар является разборным), и всех предметов, входящих в товарный набор, а также наличия необходимой информации о товаре и его изготовителе).

Предпродажную подготовку должны пройти все товары — лесо-пиломатериалы, изделия из древесины и древесных материалов (например, дверные и оконные блоки), строительные материалы (кирпич, кровельные материалы), металлопродукция (крепежные изделия или металлическая сетка), инструменты, строительные изделия ( межкомнатные или входные двери). Однако, надо учесть, что предпродажная подготовка товара не предусматривает сборки. Последнюю производят за отдельную плату (если конечно иное не указано в договоре).

Приобретая стекло, помните: стекло продается целыми листами или нарезается по размерам. Однако, следует иметь ввиду, что остатки стекла шириной до 20 см включительно оплачиваются покупателем и выдаются вместе с основной покупкой.

При продаже нефасованных крепежных изделий (в частности, крепежных, реализуемых по весу) необходимо обязательно использовать весоизмерительные приборы в месте отпуска товара. Соответственно продавец обязан обеспечить покупателю возможность проверить правильность веса, меры и сортность приобретаемого товара. В этих целях в магазине, на доступном месте должна быть размещена информация с указанием коэффициента перевода круглых лесо- и пиломатериалов в плотную кубомассу, кубатуры пиломатериалов, правил их измерения. А по требованию любопытного и придирчивого покупателя продавец обязан ознакомить его с порядком измерения строительных материалов и изделий установленным стандартам. При покупке строительных материалов и изделий, которые отпускаются на метраж покупателю надо быть очень внимательным с выбором цвета, размера, габарита, так как строительные материалы и отделочные (линолеум, пленка, ковровые покрытия и другие), кабель провода, шнуры и другие аналогичные товары надлежащего качества обмену и возврату не подлежат.

Вместе с товаром покупателю должны быть выданы товарный чек, в котором указываются наименование товара и продавца, основные показатели, характеризующие данный товар, количество товара, и относящаяся к товару документация изготовителя. Товарный чек поможет потребителю решить проблемы с продавцом в случае предъявления претензии по качеству или количеству товара.


Требования к строительным материалам

При проектировании и строительстве поселений XXI века особое значение необходимо уделить выбору материалов, из которых будут возводиться жилые дома. Традиционно в России дома и общественные здания преимущественно возводились из дерева. Это обуславливается характером местности, на которой находится наша страна и запасом деловой древесины. Однако сегодня в России используется при строительстве жилья в 20 раз меньше дерева, чем в регионах со схожими климатическими условиями в европейских странах. Для того, чтобы понять причины сложившейся ситуации обратимся к рассмотрению истории деревянного строительства.

История строительства из дерева началась намного раньше, чем из камня — как минимум, на десять тысяч лет. Около 8 тысячелетия до нашей эры деревянное домостроение стало массовым в Средиземноморье. Тогда здесь еще росли густые леса и строительного материала было вдоволь. Позднее лесные пространства стали редеть и строительного материала стало не хватать. В это время начинается использование фахверковых (каркасных) деревянных домов с заполнителем — впервые их применили в Древнем Египте. Греки начинают строить из камня, римляне — из бетона. К концу Средневековья запасы леса стали сокращаться и на севере Европы. В Германии и Австрии переходят на экономичные фахверковые конструкции, популярные здесь до сих пор. В Польше вообще на какое-то время запретили строить из дерева. Много древесины уходило на топку и кораблестроение. В ограниченности территории и нехватки лесных ресурсов и заключается причина популярности в Европе строительных конструкций, альтернативных дереву .

Русь всегда считалась и остается до сих пор страной лесов. И традиции деревянного зодчества здесь уходят в глубокую древность. Мастера срубного строительства достигли небывалых высот. Один из наиболее ярких примеров чего является Кижский погост, известный на весь мир. По легенде, 22-главая Церковь Преображения Господня была построена одним топором, без других инструментов. Известно также, что на Руси строили без гвоздей вплоть до 19 века. Одних только врубок знали более 50 типов: в «чашу», «в лапу», «в ласточкино гнездо», «в ус» и т.д.

Уже в 18-19 веках, в подражание странам Европы, в России начинают строить больше каменных зданий, традиционные для Руси технологии деревянного домостроения постепенно вытесняются европейскими, в частности применением распиловочных инструментов. В 20 веке деревянное строительство уже ассоциируют с тонкостенными бараками, гниением и горением. Эти распространенные стереотипы до сих пор препятствует возрождению деревянного строительства, хотя, как показывает исторический опыт, дерево является наиболее экономичным и долговечным строительным материалом.

Целесообразность выбора дерева в качестве основного строительного материала в средней полосе России и в районах Севера состоит в том, что дерево имеет целый ряд преимуществ перед другими строительными материалами. Оно имеет уникальные экологические свойства, экономически выгодно на территории России, сроки возведения деревянных домов значительно меньше, чем кирпичных и монолитных.

1. Дерево способно «дышать», пропускать через себя воздух, в деревянном доме всегда оптимальный воздушный и влагообменный режим. Это становится невозможным, если в деревянной конструкции используется полимерный утеплитель, поскольку его способность сохранять тепло основана на изоляции внутренней воздушной среды от наружной.

2. Дерево имеет низкий температурный коэффициент линейного расширения, небольшой вес, высокую прочность, устойчиво к воздействию солей, кислот, масел, обладает низкой теплопроводностью. Деревянная стена толщиной 45 см удерживает такое количество тепла, как кирпичная толщиной 2 м. Кроме того, деревянный дом протапливается быстрее кирпичного.

3. Ресурс деревянного дома, построенного с учетом всех особенностей работы с деревянными материалами, неукоснительном соблюдении требований технологии заготовки древесины и строительства составляет 150-200 лет. То, что некоторые дома из дерева имеют низкую долговечность, быстро становятся подвержены гниению и деструкции – является результатом нарушения технологии деревянного строительства, а не недостатком самого материала.

4. Деревянный дом не требует дополнительных затрат по его внутренней и внешней отделке.

5. Средний объемный вес сухой древесины составляет 500 кг/м3, в то время как объемный вес силикатного кирпича превышает эту цифру более чем в три раза и составляет 1700 кг/м3.

6. Благодаря легкости древесного материала достигается существенная экономия средств при закладке фундамента. Бревенчатый дом можно строить на сравнительно мягких грунтах.

7. Транспортировка готовых пакетов домов не представляет трудностей, благодаря малому весу древесных материалов. Благодаря «эластичности» элементов, небольшие бревенчатые дома можно транспортировать в собранном виде, не боясь их разрушения.

8. Потребность в тепловой энергии для бревенчатых домов меньше по сравнению с другими материалами (за исключением синтетических утеплителей, применение которых недопустимо ввиду санитарно-гигиенических требований и недолговечности). По коэффициенту теплопроводности древесина имеет преимущества перед другими материалами. Например, кирпичная стена в 32,5 см и штукатурка 1,5 см с наружной и внутренней стороны (общая толщина стены 35,5 см) имеет теплопроводность 0,735 Вт/м2. Теплопроводность стены из бревен диаметром 20 см составляет 0,7 Вт/м2.

9. За счет сравнительно тонких стен увеличивается полезная жилая площадь дома. Из бревен образуется готовая поверхность стены. Не требуется наклеивание обоев или других облицовочных материалов.

10. Деревянный дом выдерживает усадку фундамента. В результате исследований, проведенных в Японии, на территории где произошло землетрясение, установлено, что бревенчатый дом оказался наиболее крепкой конструкцией, устойчивой против землетрясения .

11. В деревянном доме очень приятно жить, так как влажность воздуха в нем наиболее оптимальна для человека — 45-57%. От влажности зависит также и интенсивность развития микроорганизмов, которые воздействуют на качество воздуха и, соответственно, на здоровье человека.

Исследования ученых показали, что если для оценки уровня комфортности атмосферы помещении в качестве эталона выбрать деревянный дом и обозначить его 1, то комфортность в доме из бетона составит 0,05, а из керамического кирпича — 0,7. Уникальные свойства бревна позволяют в сухую погоду отдавать накопленную влагу, а в сырую, наоборот, впитывать в себя ее излишки в жилом помещении. Живица и другие смолистые вещества, которые выделяют бревна из сосны, благоприятно влияют на организм человека, улучшают тонус, сон, имеют бактерицидные и антиаллергенные свойства.

Ярким примером долговечности деревянных рубленых домов является остров Кижи на Онежском озере с его великолепными образцами русского деревянного зодчества. Весь остров – это своеобразный музей деревянного зодчества под открытым небом, который включает в себя памятники Кижского Погоста (Церковь Преображения Господня — 1714 г., Церковь Покрова Пресвятой Богородицы — 1764 г., Колокольня Кижского погоста — 1874 г. Преображенская церковь- 1714 г., 9-главая Покровская церковь — 1764 г.).

Почему эти памятники деревянного зодчества сохранились и спустя 300 лет после возведения? Причина такого долголетия заключается в соблюдении всех технологических особенностей работы с деревом, в частности его заготовки и обработки. В современном деревянном домостроении бревно обрабатывается механизированным способом, с применением распиловочных инструментов. Однако для обеспечения длительного срока службы конструкции из дерева обрабатывать бревна нужно вручную, топором и другими ручными инструментами, исключая пиление, потому что поперечные удары лезвия топора закупоривают поры и капиллярные сосуды в стволе, что обеспечивает лучшую влагостойкость брёвен уже в конструкции сруба, нежели поперечный распил, порождающий продольные трещины и рвущий поры и сосуды, которые остаются открытыми капиллярами, тянущими влагу внутрь бревна.

В наши дни понимания необходимости обеспечения такого качества домов у многих строителей деревянных конструкций нет. Вследствие этого ресурс деревянных конструкций снижается, в том числе и тем, что в них используются синтетические полимерные водонепроницаемые клеи. Слои такого клея препятствуют фильтрации влаги сквозь дерево по его капиллярам, и деревянные конструкции начинают гнить изнутри, сохраняя вполне приятный вид снаружи.

Аналогичные процессы протекают и при использовании вставок из синтетических утеплителей. Наилучшими для утепления деревянного дома являются естественные утеплители (солома, камыш, льняная костра). Кроме того, что они имеют наилучшие для человека экологические характеристики, низкие энергозатраты на производство, легко заменяются и утилизируются, не нанося ущерба окружающей среде.

В современном строительстве все более широкое применение находят полимерные строительные материалы (их насчитывается свыше 100 наименований). В том числе они используются в качестве элементов деревянных конструкций. В частности, широкое распространение получила слоистая кладка стен с расположением утеплителя внутри. Построенные по такой технологии панельно-каркасные быстровозводимые дома имеют большую популярность в настоящее время и широко рекламируются в различных СМИ.
Однако строительство домов по такой технологии нельзя рекомендовать в качестве основы массового малоэтажного жилищного строительства в XXI веке. Для того, чтобы обосновать данное утверждение необходимо сформулировать критерии выбора материалов, рекомендуемых для жилищного строительства, а также упорядочить эти критерии иерархически.

1. Безопасность строительного материала для здоровья человека в преемственности поколений и биосферы Земли (безопасность с медицинской точки зрения: соблюдение санитарно-гигиенических требований к стройматериалам в процессе производства, эксплуатации и утилизации, а также экологическая безопасность).

2. Минимальные энергоемкость материалов в процессе производства и затраты на эксплуатацию и утилизацию. Т.е минимальный расход ресурсов, основанный на осознанном и бережном отношение к природе, стремление к ненанесению вреда окружающей среде .

3. Максимальный срок службы.

4. Способность к замене и ремонтопригодность материала.

5. Повторное использование в качестве строительного материала или энергоносителя при соблюдении п.2.

6. Высокий показатель энергоэффективности при соблюдении условий изложенных в п.1,2,3,4.

Таким образом, важнейшим показателем, применяемым для выбора строительного материала должна быть его безопасность для здоровья человека и биосферы Земли. При несоответствии материала этому требованию он не может быть применяем для строительства, тем более жилищного, вне зависимости от своих иных характеристики свойств, в том числе цены.

Многочисленные научные исследования показывают, что практически все полимерные строительные и отделочные материалы, созданные на основе низкомолекулярных соединений, в процессе использования могут выделять токсичные летучие компоненты, которые при длительном воздействии могут неблагоприятно влиять на живые организмы, в том числе и на здоровье человека.
Например, материалы на основе карбамидных смол, в частности древесностружечные плиты (ДСП) выделяют формальдегида в 2,5—3 раза и больше допустимого уровня. В свободном состоянии формальдегид представляет собой раздражающий газ, обладающий общей токсичностью. Он подавляет действие ряда жизненно важных ферментов в организме, приводит к заболеваниям дыхательной системы и центральной нервной системы.

Материалы на основе фенолформальдегидных смол, а именно древесноволокнистые (ДВП), древесностружечные (ДСП) и древеснослоистые (ДСП) выделяют в воздушную среду помещений фенол и формальдегид. Концентрация формальдегида в жилых помещениях, оборудованных мебелью и строительными конструкциями, содержащими ДСП, может превышать ПДК в 5—10 раз. Особенно высокое превышение допустимого уровня отмечается в сборно-щитовых домах.

Материалы на основе эпоксидных смол содержат летучие токсичные вещества: формальдегид, дибутилфтолат, эрихлоргидин и др. Например, полимербетон (ПБ) на основе эпоксидной смолы Эд-6 с введением в его состав пластификатора МГФ-9 снижает выделение ЭХГ и может быть рекомендован только для промышленных зданий.

Читайте также:  Нормы расхода строительных материалов

Поливинилхлоридные материалы (ПВХ) общей токсичностью, в процессе эксплуатации могут создавать на своей поверхности статическое электрическое поле напряженностью до 2000—3000 В/см. При использовании поливинилхлоридных плиток в воздушной среде помещений обнаруживают фталаты и бромирующие вещества. Весьма отрицательное свойство плиток — низкие теплозащитные свойства, что приводит к простудным заболеваниям. Рекомендуются только во вспомогательных помещениях и коридорах.

Стиролосодержащие полимеры выделяют в процессе деструкции стирол. Поливинилацетатные покрытия (ПВА) при недостаточном проветривании выделяют в воздушную среду помещений формальдегид и метанол в количестве, превышающем ПДК в 2 раза и более.

Еще одна экологическая угроза, исходящая из полимерных строительных материалов — противопожарные вещества — антипирены, содержащиеся в негорючих пластиках. Установлена связь вредных веществ, выделяющихся из них, и с заболеванием населения аллергией, бронхиальной астмой и др.

Проведенные в последние годы научные исследования показали, что полимерные строительные материалы могут оказаться источником выделения и таких вредных веществ, как бензол, толуол, ксилол, амины, акрилаты и др.

Ученые Института строительной экологии в Швеции к числу наиболее опасных химических соединений, выделяющихся в атмосферу жилища из полимерных строительных материалов, относят изоцианты, кадмий и антипирены. Изоцианты — опасные токсичные соединения, проникающие в жилые помещения из полиуретановых материалов (уплотнителей, соединений и др.). Как отмечают шведские специалисты, полиуретановая пена очень удобна в работе, но может оказаться небезопасной для будущего жилища. Вредное воздействие изоциантов, приводящих к астме, аллергии и к другим заболеваниям, усиливается при нагревании полиуретановых материалов солнечными лучами или теплом от отопительных батарей.

Приведенные данные говорят об опасности для здоровья человека и состояния окружающей среды применения в строительстве полимерных синтетических материалов.

В настоящее время широко распространена реклама различных теплоизоляционных строительных материалов, таких как пенополистирол, пенополиуретан, минеральная вата, и т.д. Производители этих материалов утверждают, что данная продукция является экологически чистой, долговечной, пожаробезопасной и безвредной для людей, живущих в домах, построенных на основе этих материалов.

Однако, поскольку пенопласты представляют собой дисперсные полимерные системы, они не только являются органическими соединениями, но и имеют весьма высокую поверхность контакта конструкции с кислородом воздуха. Из школьного курса химии известно, что возможность реакции определяется так называемой энергией Гиббса, а для любых реакций органических соединений с кислородом значение этой энергии будет отрицательным. Иными словами, если органическое соединение находится на воздухе, то оно будет неизбежно окисляться кислородом.

Причем, так как пенопласты имеют максимально возможную поверхность, то и окисляться они будут с максимальной скоростью по сравнению с аналогичными, но монолитными — массивными — полимерами. Поэтому для любого пенопласта неизбежно следует предположить некое конечное и весьма ограниченное время эксплуатации, когда его эксплуатационные свойства будут еще в допустимых пределах. Естественно, что с ростом температуры скорость окисления будет только возрастать. Поэтому все пенопласты являются пожароопасными материалами. И, наконец, если пенопласты неизбежно окисляются даже при комнатных температурах, то продукты такого окисления негативно воздействуют на окружающую среду.

Вопросы окислительной деструкции полимеров рассматривались многими авторами. И.С. Филатов не только приводит обширный экспериментальный материал по испытаниям различных полимеров в различных климатических условиях, но и подробно рассматривает механизмы окисления и деструкции большинства из обычно используемых полимеров. Павлов Н.Н систематизировал данные исследований советских и зарубежных исследователей в области старения полимерных материалов, рассмотрел влияние условий хранения и эксплуатации на изменение свойств полимеров различных классов.

Использование стройматериалов из синтетических полимеров, таких как пластиковые панели, пенопласт, минеральная вата и т.п. недопустимо, поскольку эти материалы не позволяют дому «дышать», препятствуют созданию благоприятного микроклимата, а также выделяют ядовитые вещества при горении, не разлагаются естественным образом. В процессе своей деструкции с течением времени (этот процесс начинается с момента изготовления и продолжается в течение всего периода эксплуатации) эти материалы выделяют в воздух ядовитые вещества, вредные для здоровья человека. На малых интервалах времени это воздействие может и не быть заметным, но, тем не менее, оно оказывает системное воздействие на организм и в некоторых случая даже генетику живущих таких домах.

В России большое распространение в качестве наполнителя для сэндвич панелей получила минеральная вата. Это связано с тем, что по нормам пожарной безопасности минеральная вата считается безопасным и негорючим материалом. На самом деле это не совсем так – негорючим материалом является минеральная вата как таковая. При производстве сэндвич панелей вату пропитывают специальными органическими добавками, которые в свою очередь горючи. Опасность возгорания существует также со стороны полиуретанового клея, который используется для скрепления наполнителя с покровными листами. Таким образом, если рассматривать панель с наполнителем из минеральной ваты как конструкцию, то между листами металла содержатся до 10% горючих составляющих.

Существует распространенное мнение, что деревянный дом – это потенциальная опасность пожаров. Но причинами пожаров является человеческая халатность и пренебрежение правилами безопасности, при соблюдении же требований противопожарной безопасности нет причин бояться возгорания жилища.

Кроме того, в случае возгорания конструкций с использованием синтетических и полимерных материалов (например, минеральной ваты, пластиковых облицовочных панелей, «сайдинга», пенополистирола, линолеума, синтетических клеев и т.п.), если даже некоторые из таких материалов и рекламируют в качестве не поддающихся горению, то в процессе тления они выделяют в воздух жилой зоны такое количество ядов, что выживший после такого пожара получает серьезное отравление организма.

В рекламе теплоизоляционных полимерных материалов часто отмечается их пожаробезопасность, но производители, описывая данное свойство, используют некорректные формулировки, утверждая, что какой-либо пенопласт не горит или самостоятельно затухает. Факт такого поведения пенопласта не говорит о пожарной безопасности данного материала. Дело в том, что официально классификация всех строительных материалов на пожарную опасность производится согласно стандартной методике, в ходе которой учитывается убыль массы материала при нагревании на воздухе, а не возможность самостоятельно гореть после удаления источника пламени. Поэтому по классификации на пожарную опасность полимеры, относятся к классу «Г», то есть горючих материалов.

Теоретические вопросы термического разложения полимерных материалов подробно рассмотрены, например, в монографии С.Мадорского . На практике проблема пожарной опасности рассматривается обычно с двух сторон: опасность собственно горения полимеров и опасность продуктов термического разложения и окисления материала. Например, исследователями установлено, что основным поражающим фактором пожаров являются летучие продукты горения . В среднем только 18% людей гибнет от ожогов, остальные — от отравления в сочетании с действием стресса, тепла и др. Имеются данные о том, что даже при сравнительно небольшом пожаре в помещении, насыщенном полимерными материалами, происходит быстрая гибель находящихся там людей главным образом от отравления ядовитыми летучими продуктами.

Исследования Российского научно-исследовательского центра пожарной безопасности ВНИИПО МВД РФ однозначно говорят о высокой пожарной опасности полимерных материалов. Например, в приведенном отчете об испытаниях на пожарную опасность полистирольного пенопласта указано, что значение показателя токсичности образцов близко к граничному значению класса высокоопасных материалов.

Эти известные в специальной литературе факты находят отражение также и в средствах массовой информации. Так, например, в газете «Местное время» г. Пермь приводится пример пожара в жилом доме. Автор статьи пишет: «Во время пожара погибла женщина. Парадокс ситуации в том, что возгорание произошло в квартире, расположенной двумя этажами выше. Причиной смерти стал токсичный дым полистирола».

Выделение газообразных токсичных веществ в результате горения полимерных строительных материалов является серьезной опасностью для людей, живущих в таком доме. Достаточно указать, что термическое разложение при горении 1 кг полимера дает столько газообразных токсичных веществ, что их достаточно для отравления воздуха в помещении объемом 2000 м3. У человека, находящегося в таком помещении, через 10—15 минут возникает тяжелое отравление или даже гибель.

Продуктами горения полимерных материалов являются такие токсичные вещества, как формальдегид, хлористый водород, оксид углерода и др. При горении пенопластов выделяется весьма опасный газ — фосген (в первую мировую войну он применялся как отравляющее вещество удушающего действия), при термическом разложении пенополистирола — цианистый водород, газообразный стирол и другие не менее опасные продукты.

Известно, что во время пожара в московской гостинице «Россия» в конце 70-х гг. основной причиной смертельного исхода для многих проживающих там людей были не термические ожоги, а отравление токсичными газами при горении облицовочных полимерных и лакокрасочных материалов.

Таким образом, полимерные материалы в строительстве не только нельзя считать пожаробезопасными, но наоборот, их воспламенение или тление и термическое разложение представляет потенциальную опасность для здоровья и жизни людей.
Срок службы конструкций с использованием полимерных материалов

Любой эффективный утеплитель: полимерный или из минеральной ваты стареет и подлежит деструкции. В течение первых 8 – 12 лет эксплуатации утеплитель теряет около 35% своих теплосберегающих свойств, что снижает надёжность здания, то есть способность его конструкций сохранять проектные показатели в течение всего расчётного срока эксплуатации. И заменить его без разбора наружной версты кладки невозможно, то есть обслуживанию подобная конструкция не подлежит.

В монографии С.В. Александровского «Долговечность наружных ограждающих конструкций» приводятся показатели долговечности трёхслойных стен с пенополистирольным утеплителем в г. Москве. Согласно материалам данной работы снижение прочности утеплителя на 20% в стенах северной ориентации происходит в течение 54 лет, а в стенах южной ориентации – за 32 года. Ю.Д. Ясин (НИИ Строительной Физики») в своей работе «Ресурс и старение материала» приводит такие сроки службы ограждающих конструкций :


• пенополистирпол внутри стены – от 15 до 50 лет,
• минеральная вата вата – от 20-50 лет,
• стеклопакеты клеёные – 10-15 лет,
• панели из тяжёлого бетона с утеплителем внутри – 50 лет,
• однородные стены из пустотелого керамического кирпича – от 100 до 150 лет.

Строительная индустрия в России затрачивает огромные материальные, энергетические и трудовые ресурсы на производство утеплителей и строительство с его применением внутри кладки или панели, в результате чего возводятся объекты, надёжность и долговечность которых невозможно гарантировать более чем на 25 – 30 лет. Подобный подход не только не даёт энергоресурсоэффективности, а наоборот, приводит к необоснованному перерасходу энергии и ресурсов .

Для того, чтобы определить насколько экономичны дома на основе вышеперечисленных полимерных и синтетических строительных материалов и какой народнохозяйственный эффект дает их массовое производство и эксплуатация необходимо установить энергоемкость процессов по их производству и утилизации измеряемую в кВт*ч/н.е. За н.е. (натуральную единицу) принимается м.куб. материала или м.кв. при одинаковой установленной теплопроводности материала (материалов).

Одним из основных критериев энергетической эффективности в соответствии с государственным стандартом РФ является критерий полной энергоемкости продукции или услуг (Эпр.у) в мегаджоулях на натуральные единицы (МДж/н.е.) измерения (шт., тыс. руб., часов и др.) определяемый по формуле:

Эпр.у=Эе + Эм + Эф + Эр + Эо,

где Эе — полная энергоемкость ТЭР, необходимых для производства продукции, исполнения услуг,
Эм — полная энергоемкость исходных сырья, веществ, материалов, комплектующих изделий, необходимых для производства продукции, исполнения услуг,
Эф — полная энергоемкость основных производственных фондов (ОПФ), амортизированных при производстве продукции, исполнении услуг,
Эр — полная энергоемкость воспроизводства рабочей силы при производстве продукции, исполнении услуг,
Эо — полная энергоемкость мер по охране окружающей среды при производстве продукции, исполнении услуг.

Предлагаемый в государственном стандарте подход по учету потребления всех видов топливно-энергетических ресурсов ориентируясь на условное топливо, в настоящее время не соответствует устоявшейся мировой тенденции по переводу всех затрат в кВт*ч. Что подтверждается периодическими публикациями в иностранной прессе и в том числе на сайте ЦРУ США различных данных по годовым объёмам выработки электроэнергии в мире и других сведений измеряемых в кВт*ч, которыми пользуются управленцы разных уровней при принятии решений.

Что касается термина «тонна условного топлива» имеет ограниченное право на существование при анализе энергетического комплекса отраслей, но она не пригодна для долгосрочного экономического анализа, прогнозирования и планирования потому, что характер её связи с реальными энергоносителями меняется вместе с изменением технологической базы производства и, прежде всего, энергетических отраслей. В отличие от неё «килоВатт*час электроэнергопотребления» остаётся одним и тем же вне зависимости от того, какой спектр первичных энергоносителей лежит в основе его получения, и как этот спектр изменяется в результате научно-технического прогресса .

В таблице 1 приведена Энергоемкость основных используемых в строительстве материалов, атаблице 2 — Значения энергетических эквивалентов для строительных материалов.

Таблица 1
Энергоемкость основных используемых в строительстве материалов .

Таблица 2
Значения энергетических эквивалентов

По данным таблиц 1 и 2 можно сделать вывод, что натуральные, природные строительные материалы обладают наименьшей энергоемкостью производства. Сочетание этого факта с наилучшим соответствием указанных материалов критерию экологической безопасности делает их использование для жилищного строительства наиболее приоритетным.

При выборе стройматериалов необходимо учитывать что, суммарные удельные энергозатраты на строительство здания (в том числе на добычу и переработку сырья, производство строительных материалов и изделий-полуфабрикатов, строительно-монтажные работы, транспорт, оборудование здания и пр.) могут существенно превышать удельные эксплуатационные энергозатраты на отопление здания за весь расчетный срок службы дома и затраты на дельнейшую утилизацию здания.

Следовательно, критерием оптимальности выбранных проектных решений, в том числе и по выбору строительного материала, на ряду с критериями экологической безопасности, должны служить совокупные удельные энергозатраты на строительство здания, его эксплуатацию (отопление, ремонт и т.п.) за весь расчетный срок службы этого здания и дальнейшую утилизацию.


Поделитесь статьей в соц. сетях:
Вам также может быть интересно:
  • Оборудование для производства строительных материалов
  • Огнестойкость строительных материалов
  • Пожарная безопасность строительных материалов
  • Пожарная опасность строительных материалов
Логотип сайта Все для стройки

Станьте первым!

Оставьте комментарий
Нажмите, чтобы отменить ответ.

Данные не разглашаются. Поля, помеченные звездочкой, обязательны для заполнения

Свежие записи:
  • Юнис сухие строительные смеси

    Новые поступления Предназначен для изготовления лепных и рельефных деталей, проведения ремонтно-стро

  • Штукатурка волма гипс актив
  • Шахтная печь для обжига извести
  • Чем растворить известь
  • Чем отмыть цемент
© 2021 ~ Все для стройки ~ ~ Разработка WP-Fairytale